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ABSTRACT: Concept of both real and complex Gaussian Random Variables (GRVs) and their 

corresponding Gaussian Random processes (GRPs) is very important and critical for understanding and 

designing of a real Communication System. In this paper, we thus discuss and compute the various 

parameters involved in characterizing the real and complex Gaussian distributions completely for one and 

multiple Random Variables (RVs). We first carry out our analysis for one real GRV and then extend our 

work to multiple real GRVs. Furthermore, we apply our technique for studying one complex GRV and 

subsequently extend it to the analysis of multiple complex GRVs also known as multivariate complex 

Gaussian random vector. Finally, we make the necessary comparison between real and complex Gaussian 

Distributions which are the key components of Additive White Gaussian Noise (AWGN) for baseband and 

bandpass transmission of the digital data through non ideal channels of digital Communication Systems.      
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1 INTRODUCTION 
The study of both real and complex Gaussian distributions is 

very essential and critical in further understanding of 

Gaussian Random and Stochastic Processes. The 

transmission of information through non-ideal channel 

involves addition of additive white Gaussian Noise (AWGN) 

which plays significant role in distorting the information. 

This noise carries the properties and characteristics either of 

a real or a complex Gaussian Random Process depending 

upon the type of transmission, i.e., baseband or bandpass. 

The power spectral density (PSD) of both white and thermal 

noises is practically flat over a very large band (up to 1000 

GHz at room temperature), [1–3].  

Bandpass transmission contains the PSD of a random 

process to be confined to a certain passband while baseband 

transmission allows the PSD of the process to be defined 

around the low frequency spectrum region. Bandpass 

random processes can be used effectively to model 

modulated communication signals and bandpass noises. Like 

bandpass signals, we can also model the bandpass noise in 

terms of its in phase and quadrature components using the 

two famous carriers. The PSD of this process can easily be 

expressed in terms of the PSD of the baseband random noise 

process [1–5].      

The Gaussian random process is perhaps the single most 

important random process in the area of communication. 

This process has a uniform PSD over large range of 

frequency spectrum and is thus known as a white Gaussian 

random process. The envelope of Gaussian noise process 

behaves like Rayleigh density distribution. This distribution 

can easily be fabricated from two independent real GRVs or 

one scalar complex GRV having zero mean and the same 

variance. The magnitude of scalar complex GRV thus 

follows Rayleigh density function and phase of scalar 

complex GRV follows the uniform distribution. On the other 

hand, when a sinusoidal signal is buried in this narrowband 

Gaussian noise, then the envelope of this transmission over 

the communication channel follows Ricean density instead 

of Rayleigh distribution due to non-zero mean of the noise 

mixed with the information. However, this density 

approaches to Gaussian density with certain a mean and 

variance for the case when amplitude of the signal is much 

larger than variance of the noise. The phase of the noise in 

this case does not follow the uniform distribution due to 

non-linear terms involved into its density expression [4 – 7]. 

This paper is organized as follows: Section 2 computes the 

parameters required for complete description of Gaussian 

distribution for one real random variable. Extension to more 

than one real Gaussian random variable is carried out in 

section 3. Section 4 and 5 describe the detailed analysis for 

one and more than one complex Gaussian Random variables 

respectively. We make the important comparison between 

real and complex Gaussian Distributions in section 6. 

Finally, we present our conclusions in section 7.     

2 COMPUTATION OF THE PARAMETERS NEEDED 

FOR REAL GAUSSIAN DISTRIBUTION IN CASE 

OF ONE RANDOM VARIABLE 

This is a very important type of continuous distribution 

which is extensively used in the performance analysis of 

many communication systems because of the addition of 

white Gaussian Noise (AWGN) in the transmitted signal 

when it is received by the receiver. A real Gaussian Random 

Variable (RV), X is said to be normally distributed with 

mean, (mx) and variance, (σx
2
), if its probability density 

function, (PDF) can be expressed in the following form: 
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We’ll soon show that the area bounded by fX(x) over the 

entire x-axis is unity. Since linear transformation applied to 

Gaussian Random variables does not change its property [6], 

so we introduce such type of transformation as, Y =            

(X – mx)/σx in order to convert this PDF into standard 

Gaussian PDF [7], whose mean is zero and variance equal to 

unity.  The PDF of the RV, Y using the results of linear 

transformation thus becomes  
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Now, we’ll first show that area bounded by this PDF over 
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the entire z-axis is unity. This can easily be done by first 

doubling the area bounded in the right half plane, then 

making the substitution, y = sqrt(2u) and finally employing 

the definition of gamma function. We now verify the mean 

and variance of the RV, Y using the known mean and 

variance of the RV, X using the transformation. σy my =       

σy E(Y) = E(X) – E(mx) = mx – mx = 0  my = 0 since σy ≠ 0. 

Now, (Y – my)
2
 = Y

2
 = (σx)

-2
 x (X – mx)

2
. Thus, Var(Y) = (σy)

2
 

= (σx)
-2

 x Var(X) = 1, hence verified! This immediately 

shows that the mean and the variance of the RV, X given in 

eq. (1) are correct and the area bounded by its PDF over 

entire x-axis is also unity.  

Similarly, we can also compute the cumulative distribution 

function (CDF) of the RV, Y first and then apply this result 

in obtaining the CDF of the RV, X. Thus, we make use of the 

definition for CDF of the RV, Y as shown below: 
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Where Q(y) is the Marcum’s Q-function whose value is 

given by the area contained in the right tail of the standard 

normal curve, N(0, 1) starting from y to infinity. CDF of the 

RV, X using eq.(3) can be obtained utilizing its definition as 
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We now make use of eq. (4) and compute the probability 

that the value of the RV, X lies within one, two and three 

standard deviation(s) away from the mean, i.e. 

m k x m k     , where k = 1, 2, 3 respectively. 

Hence, we compute the following three important results of 

this distribution as: 
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We now proceed onwards to compute the moments of 

the RV, X from the knowledge of the moments of the RV, Y. 

For odd values of n = 2k + 1, where k ε Z
+
, we immediately 

conclude that all odd moments of the RV, Y are zero. This is 

due to the fact that the integrand (y
n
fY(y)) becomes an odd 

function and from Calculus, carrying out integration of an 

odd function within the interval having origin as an 

intermediate value results into a zero value. Thus, we show  
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For even values of n = 2k, we compute the moments of Y as 

       

   

   

        

   

 
 

     

2

2 2

0

2 2

0 0

1 2

0

2

2 2 2 2

2 2 1 2

1 2 1 2 1 1 2 1 2

2 1 2 3 2 5 3.1
1 2

2.2.2 2.2 2

2
1 2 2 1 2 3 2 5

k
n n k

even even

even

k ky u

kk u k

k

k

E y f y dy y f y dy y f y dy

y e dy u e du u

u e du k

k k k k

k k k

k k k k

 

 



  

 

 

 


 

     

 

   

         

  
 



     

  

 



Y Y YY

      

   

 
 

   

 
 

   
 2

3.1

2 2 1 2 2 2 3 2 4 2 5 2 6 4.3.2.1

2 2 2 2 4 2 6 6.4.2

2 !
,

2 . !

2 !
, ; 2 7

2 . !

n

k

n k

x xk

k k k k k k k

k k k k

k
Thus E

k

k
Hence E m for n k

k


     


  



  

Y

X

We next move on to the moment generating function (MGF) 

and characteristic function (CF) of the RV, X. Again, we’ll 

follow an indirect approach, i.e., we will first compute the 

MGF and CF of the RV, Y and then will compute the desired 

MGF and CF of the RV, X by using these results. Thus, we 

apply the definition of MGF to the RV, Y and proceed as  
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All moments of the RV X can also be generated using the 

moment generating function (MGF) approach as follows: 
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3 COMPUTATION OF THE PARAMETERS NEEDED 

FOR REAL GAUSSIAN DISTRIBUTION IN CASE 

OF TWO AND MORE RANDOM VARIABLES 

Consider X and Y are two real GRVs. We can define their 

Joint or Bivariate PDF, fX,Y(x,y) in terms of their five known 
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parameters, i.e., means (mx, my), variances (σ
2

x, σ
2
y) of the 

RVs X and Y respectively and their correlation coefficient, 

ρxy. The joint PDF of real GRVs  is given by [1] – [7]: 
              2 2, 0.5 2 9xyf x y Aexp K a x a x b y b y   

XY
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We can easily show that area bounded by the joint PDF over 

the entire x and y axes is equal to unity. This can be done as   
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We now want to extend the representation given in eq. (9) 

for multivariate GRVs more than two. For this purpose, we 

need to express this representation into some suitable and 

convenient form which can facilitate us for further analysis. 

Let us express the argument of exponential function into 

some standard and the desirable form as explained below: 
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We thus can write eq. (9) into our desired form as 
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The representation of eq. (11) can easily be extended to 

more than two GRVs. Hence we conclude that multivariate 

real Gaussian Distribution is completely described by its two 

important parameters; i) mean vector, mX and ii) the 

covariance matrix, CX . If the RVs, X and Y are uncorrelated, 

i.e., ρxy = 0, then it is obvious from above that off diagonal 

terms of the covariance matrix become equal to zero and it 

reduces to just a diagonal matrix whose determinant equals 

to the product of all its diagonal terms which are the 

variances of the GRVs involved. The joint PDF in this case 

reduces to the product of marginal PDFs and makes the RVs 

X and Y independent for the case of GRVs only. However, 

this is not the case in general for other types of RVs. 

The marginal PDFs of the RVs X and Y can easily be 

obtained by first expressing the joint PDF given in eq. (9) 

into product of marginal PDF and conditional PDF and then 

integrating out the conditional PDF which reduces to unity 

from applying the fact that it is a PDF. We thus conclude 

that marginal PDFs of the RVs X and Y are also Gaussian 

with their respective means and variances. However, the 

converse is not true in general [6]. Similarly, we can also 

show that conditional PDF (obtained by taking the ratio of 

joint PDF and the marginal PDF and utilizing some 

manipulation and simplification) is also Gaussian with its 

own conditional mean and conditional variance.  

Joint moment generating (MGF) and joint characteristic 

functions (CF) can also be obtained easily by utilizing the 

property of linear transformation applied to GRVs. Thus, we 

proceed in the following manner: 
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The joint moments of the GRVs can also easily be obtained 

by extending the definition and the result of eq. (9) to more 

than one RV as [6] 
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where i and j both belong to the set of positive integers. 
4. COMPUTATION OF THE PARAMETERS 

NEEDED FOR COMPLEX GAUSSIAN 

DISTRIBUTION IN CASE OF ONE RANDOM 

VARIABLE 

A complex Gaussian RV, Z is defined to be Z = X + jY, 

where X and Y are both real GRVs. The complex Gaussian 

PDF arises naturally from a consideration of the distribution 

of the complex envelope of a bandpass process.  We can 

describe the PDF of scalar complex RV, Z by assuming the 

RV X to be independent from the RV Y. Both X and Y are 

GRVs distributed as N(mx, σ
2
) and N(my, σ

2
). Mathematical 

description of the PDF of Z is achieved by computing first 

the joint PDF of the RVs X and Y as [6] – [7] 
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Comparison of eq. (15) with eq. (14) reveals us that Var(Z), 
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which is equal to covariance matrix, CZ for n = 1 and 

|det(CZ)| =2
n
 |det(CX)|

1/2
 and (X – m)

t
 (CX)

-1
(X – m) = 2 x    

(Z – mZ)
H
 (CZ)

-1
(Z – mZ), where H denote Hermitian 

transpose of the vector which contains transpose and 

conjugation operations jointly. Thus, PDF of Z computed in 

eq. (15) can also be written in most suitable form as 

            
1

1 2

1

, 16
Hn

n

f z det C exp - - m C m m 






  Z Z Z Z Z Z ZZ Z CN

The representation in eq. (16) is called the complex 

Gaussian PDF for a scalar RV, Z and is denoted by 

 2,Z ZCN m  . 

5. COMPUTATION OF THE PARAMETERS 

NEEDED FOR COMPLEX GAUSSIAN RANDOM 

VECTOR  

We now consider a complex random vector, Z =                

[Z1 Z2…Zn]
t
, where each Zi = Xi + jYi is distributed as The 

frequency response of this pulse is defined as  2,i iCN m   

for i = 1, 2, …, n and is also independent. By independence, 

we mean that the real random vectors (X1  Y1)
t
, (X2  Y2)

t
,…, 

(Xn  Yn)
t
 are independent. Then, the multivariate complex 

Gaussian PDF of the random vector, Z is just the product of 

the marginal PDFs expressed in eq. (15) as 
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The representation in eq. (17) is the multivariate complex 

Gaussian PDF and it is denoted by  ,ZCN C
Z

m . It has 

been derived for the case of independent complex GRVs but 

however it is also valid for correlated complex GRVs [1], [6] 

– [7]. The proof is not a difficult one but we are able to 

define proper and circularly symmetric Gaussian random 

vectors as CX  = CY (symmetric) and CXY = - CYX (skew 

symmetric). Also CZ = CX + CY + j(CYX – CXY) = 2CX + 

j2CYX; CX = CY = ½ Re(CZ) and CYX = - CXY = ½ Im(CZ) and 

 18
X XY

Z

XY X
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where the matrices CX and CY are the covariance matrices of 

real random vectors X and Y respectively and hence they are 

symmetric and nonnegative definite. Similarly CXY denote 

the correlation matrix among the real random vectors X and 

Y and it is obvious that (CXY)
t
 = CYX as it is evident from 

their definitions [7]. In a similar manner, we can also 

express the real multivariate Gaussian PDF of the random 

vector, X = [X1 X2 … Xn    Y1 Y2…Yn]
t
 using eq. (11) as  
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This reduces to multivariate complex Gaussian distribution 

of eq. (16) using the relations already explained in section 4. 

Thus, we conclude that in context to multivariate real 

Gaussian PDF, a multivariate complex Gaussian distribution 

also requires two important parameters for its complete 

description; i.e., i) mean of the random vector = mZ = mX + 

jmY  and ii) covariance matrix of the random vector = CZ = 

2(CX + jCY) whose PDF is given by eq. (17).   

6 MOMENT GENERATING AND CHARACTERISTIC 
FUNCTIONS OF THE COMPLEX GAUSSIAN 
RANDOM VECTOR 

In this section, we shall make use of the result already 

derived in eq. (12) along with the relations mentioned in 

section 4 for the case of multivariate complex Gaussian 

distribution. Knowing the fact that for multivariate real 

Gaussian vector,  ,C
X

X N m , the MGF of X may be 

defined using inner product as 
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 and CX has 

special form, then letting Z = X + jY and mZ = E(Z) = E(X) + 

jE(Y) = mX + jmY with s = [(sR)
t
  (sI)

t
]

t
 so that 

R Is js s , 

we can compute the result for inner product mentioned in 

eq.(20) as 
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Moreover, we have mentioned in section 4 that 

2

H
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s s
 and this allows us to express MGF and CF of 

the random vector, Z using the result of eqs. (20) & (21) as 
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Similarly, a linear transformation applied to multivariate 

complex Gaussian random vector, Z like multivariate real 

Gaussian random vector, X does not change its property. 

Thus, the complex random vector, W = AZ + b will also be a 

multivariate complex Gaussian distribution with complex 

mean vector, mW and covariance matrix, CW = A CZ A
H
.   
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Hence, we write the complex Gaussian random vector, W as 

   , , Hm C Am b AC A
W W Z Z

W CN CN .  

7 COMPARISON OF REAL VS COMPLEX 
GAUSSIAN DISTRIBUTIONS 

Real Gaussian distribution, X is normally used for baseband 

transmission while complex Gaussian distribution, Z is used 

for bandpass transmission in digital communication. Mean 

of X is a real quantity while it is complex for the case of Z. 

Likewise, variance of Z is computed as E(|Z – mZ|)
2
 in order 

to make it real in comparison to the variance of X which is 

simply equal to E(X – mX)
2
 and is always real. For a scalar 

complex Distribution, its covariance matrix, CZ = Var(Z) = 

2Var(X) = 2Var(Y) and its PDF, fZ(z) is obtained by 

substituting n = 2 in eq. (11) along with using the relations 

already established in section 4. For multivariate complex 

random vector Z, we already mentioned that CZ = 2CX = 2CY 

and CXY = -CXY for proper and circular Gaussian RVs [1], [7]. 

This relation leads to det
2
(CZ) = 2

2n
det(CX) and                   

(X – mX)
t
(CX)

-1
  (X – mX) = 2(Z – mZ)

H
(CZ)

-1
(Z – mZ) in this 

case. Linear transformation applied to multivariate complex 

Gaussian vector, Z modifies the covariance matrix from 

ACXA
t
 in case of multivariate real Gaussian vector, X to 

ACZA
H
. Mean vector also becomes complex due to complex 

nature of the random vector, Z. While computing MGF and 

CF in case of multivariate complex Gaussian distribution, 

the inner product term (i.e., first) defined in eq. (20), and the 

2
nd

 term (i.e., quadratic form) of the same equation have to 

be modified accordingly (i.e., as per eq. (22)). Multivariate 

complex Gaussian distribution is quite general in nature 

since multivariate real Gaussian distribution expressed in  

eq. (11) can easily be obtained from eq. (17) by setting all Y 

Gaussian random variables of Z equal to zero and changing 

the hermitian operation to transpose only.    

 

8 CONCULUSIONS 

 

In this paper, we derived the various important parameters 

required for complete description and characterization of 

real and complex Gaussian distributions in case of one and 

multiple random variables. Their thorough understanding 

further helps us in the study and analysis of white and 

thermal noise Gaussian processes. Real multivariate 

Gaussian distribution is basically used for baseband 

transmission for example B-PSK, B-FSK and on-off 

signaling of the digital communication system. However, 

complex Gaussian distribution is primarily used for 

bandpass transmission such as M-ary PSK and M-ary QAM 

constellations of digital communication systems. The 

analysis and knowledge of these distributions is quite 

essential and critical in the design of receivers of digital 

communication systems properly. Finally, we have made 

comparison between multivariate real and complex Gaussian 

random vectors and their corresponding PDFs for thorough 

understanding and benefit of concerned readers and students 

of graduate programs studying at various universities of 

Pakistan.  
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